Acta Crystallographica Section E

Structure Reports

Online

catena-Poly[[bis(4-cyanobenzoato- κ O)copper(II)]-di- μ-3-aminopyridine- $\left.\kappa^{2} N^{1}: N^{3} ; \kappa^{2} N^{3}: N^{1}\right]$

ISSN 1600-5368

Hong-Yin He and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.057$
$w R$ factor $=0.132$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, the two crystallographically distinct Cu atoms each lie on an inversion centre and are coordinated by N atoms from four 3aminopyridine ligands, two from the amino groups and two from the pyridine rings. The octahedral coordination about each Cu atom is completed by two carboxylate O atoms from different 4 -cyanobenzoate ligands. The 3 -aminopyridines serve as bridging ligands, linking adjacent Cu atoms into one-dimensional chains. In the crystal structure, weak N $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions form a two-dimensional layer structure.

Comment

4-Cyanobenzoate metal complexes have been extensively studied in our laboratory in recent years and have provided some interesting structural assemblies (He \& Zhu, 2003a; He et al., 2003, 2005). Despite using a similar synthetic procedure to that which produced the monomeric cobalt complex diaquabis(3-aminopyridine)bis(4-cyanobenzoato)cobalt(II) dihydrate (He \& Zhu, 2003b), we find that the copper salt yields the title coordination polymer, (I).

In the title complex, there are two crystallographically independent Cu atoms in the asymmetric unit and each lies on an inversion centre. Each Cu atom is coordinated by N atoms

Received 19 December 2005 Accepted 22 December 2005 Online 7 January 2006

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes (i): $2-x, 1-y,-z$; (ii): $1+x, y, z$; (iii) $1-x, 1-y,-z$; (iv) $2-x, 1-y$, $1-z ;(\mathrm{v}): 1-x, 1-y, 1-z$.
from four 3-aminopyridine ligands, two from the amino groups and two from the pyridine rings. The octahedral coordination about each Cu is completed by two carboxylate O atoms from individual monodentate 4-cyanobenzoato ligands (Fig. 1 and Table 1). The 3 -aminopyridine ligands act as μ_{2}-bridging ligands linking adjacent Cu 1 or Cu 2 atoms into approximately parallel one-dimensional chains along the a axis (Fig. 2). Moreover, there are intramolecular hydrogen bonds within the chains and a weak $\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$ intermolecular interaction generates a two-dimensional layer structure and stabilizes the crystal packing (Table 2).

Experimental

Crystals were grown using three layers of solutions in a narrow tube. The bottom layer comprised 5 ml of water containing $0.10 \mathrm{~mol} \mathrm{l}^{-1}$ $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the middle layer 3 ml of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ solvent and the upper layer 5 ml of $\mathrm{CH}_{3} \mathrm{OH}$ containing $0.12 \mathrm{~mol} / 14$ cyanobenzoic acid and $0.12 \mathrm{~mol} \mathrm{l}^{-1} 3$-aminopyridine. After 2 d , green plate-shaped crystals of (I) were obtained.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$	$Z=2$
$M_{r}=544.02$	$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.3906(9) \AA$	Cell parameters from 1217
$b=13.613(2) \AA$	\quad reflections
$c=15.466(3) \AA$	$\theta=5.3-44.8^{\circ}$
$\alpha=63.894(3)^{\circ}$	$\mu=0.97 \mathrm{~mm}^{-1}$
$\beta=81.922(4)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=80.455(3)^{\circ}$	Plate, green
$V=1188.0(3) \AA^{\circ}$	$0.46 \times 0.22 \times 0.05 \mathrm{~mm}$

Figure 2
A view of the approximately parallel one-dimensional chains formed along the a axis in (I). H atoms have been omitted for clarity.

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.666, T_{\text {max }}=0.951$
6040 measured reflections

> 4151 independent reflections
> 2697 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.062$
> $\theta_{\max }=25.1^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-16 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.132$
$S=0.98$
4151 reflections
349 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0398 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.53 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.945(3)$	$\mathrm{Cu} 2-\mathrm{O} 3$	$1.949(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.036(4)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$2.063(4)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.604(4)$	$\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{i}}$	$2.689(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$88.41(14)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 4$	$88.82(14)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$91.59(14)$	O 3 iii $-\mathrm{Cu} 2-\mathrm{N} 4$	$91.18(14)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$89.92(13)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{i}}$	$93.43(14)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$90.08(13)$	$\mathrm{O} 3^{\mathrm{iii}}-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{i}}$	$86.57(14)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$86.04(14)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{i}}$	$85.57(14)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$93.96(14)$	$\mathrm{N} 4^{\mathrm{iii}}-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{i}}$	$94.43(14)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+2,-y+1,-z$; (iii) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {iv }}$	$0.90(4)$	$2.03(2)$	$2.903(5)$	$164(5)$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iv }}$	$0.89(5)$	$2.26(5)$	$3.122(5)$	$165(5)$
$\mathrm{N} 5-\mathrm{H} 5 B \cdots 4^{\text {iv }}$	$0.89(5)$	$2.00(5)$	$2.871(5)$	$165(5)$

Symmetry code: (iv) $x-1, y, z$.

C-bound H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. N-bound H

metal-organic papers

atoms were located in difference Fourier maps and refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.90$ (1) \AA with $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Shanghai Institute of Organic Chemistry for the diffraction measurements, the National Natural Science Foundation of China (grant No. 50073019),
and the Analytic and Measurement Fund of Zhejiang Province.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
He, H.-Y., Ma, A.-Q. \& Zhu, L.-G. (2003). Acta Cryst. E59, m333-m335.
He, H.-Y. \& Zhu, L.-G. (2003a). Acta Cryst. E59, o174-o176.
He, H.-Y. \& Zhu, L.-G. (2003b). Acta Cryst. E59, m1192-m1193.
He, H.-Y., Zhu, L.-G. \& Ng, S. W. (2005). Acta Cryst. E61, m311-m313.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

